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Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo
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This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale
liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate
transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the
induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present
in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean
flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field.
The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual
three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of
poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a
dynamo magnetic field.
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I. INTRODUCTION

Long has it been known that the magnetic fields of
astrophysical objects are generated by flows of conductive
media within their interiors [1] and significant investments
have been made in both theory (with three-dimensional codes
running on modern supercomputers [2–4]) and laboratory
experiments [5,6] to capture the dynamics of the magnetic
and velocity fields. Large-scale flow shear contributes to the
formation of axisymmetric magnetic fields, but Cowling’s
antidynamo theorem dictates that no axisymmetric flow of
a conductive medium can excite an axisymmetric magnetic
field [7]. Instead, fluctuating, nonaxisymmetric flows and
fields must coherently interact to close the axisymmetric
dynamo loop. Laboratory dynamo experiments in Refs. [5,6]
are designed around simple, axisymmetric, two-vortex flows
that can, at least theoretically, excite nonaxisymmetric dipole
magnetic fields. Many stellar dynamo simulations achieve
complicated convective flows with no assumed axisymmetry
that excite axisymmetric dipole fields. These simulations
build up a magnetic field out of toroidal shear, advection,
diffusion, and electric currents induced by helical eddies in
the conductive medium.

In stars and planets the natural axis of symmetry is the
rotation axis, as the rotation of the system is typically much
faster than the flows of the conducting fluid (plasma in stars
and iron in planets). As a result, the flows are rotationally
constrained. Observations of dynamo-generated magnetic
fields in the Sun, Earth, and various planetary bodies (e.g.,
Saturn, Jupiter, and some moons) generally indicate a highly
axisymmetric field though there are some exceptions (e.g.,
Uranus and Neptune) [8]. In simulations of stellar dynamos
(e.g., Refs. [2–4,9,10]) convection establishes highly complex
nonaxisymmetric flows as well as large-scale axisymmetric
flows with differential rotation that act together to generate
strong global-scale axisymmetric fields. Latitudinal and radial
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shear in the differential rotation amplifies axisymmetric
toroidal fields, while the axisymmetric poloidal (dipolelike)
field is generated by turbulent correlations between the
fluctuating nonaxisymmetric flows and fields. At present it
is unclear whether these correlated fluctuations are due to
large-scale flows or due to small-scale helical eddies in the
conductive medium. Here, in the context of laboratory flows,
we will study a system where the former yield an axisymmetric
poloidal field.

The typical framework for describing the dynamo effect
relies upon mean-field theory [11], where small-scale fluctu-
ations in the magnetic field and in the flow of the medium
coherently interact and generate a large-scale magnetic field.
Mean-field theory is built upon the assumption of isotropic
turbulence and a separation of scales between the flow of
the conductor and the induced magnetic field. Much of
the discussion of mean-field effects focuses on these scale-
separated eddies [3,12], but there is numerical [13,14] and
experimental [5] evidence that the large eddies are essential to
understanding the conditions for dynamo onset.

This discussion will take a simple flow, the two-vortex
(t2s2) flow of Dudley and James [15], and analyze the specific
dynamic effects that allow it to excite a magnetic field. This
flow is chosen because of its similarity to the von Kármán and
Taylor-Green flows. It is probably the simplest possible flow
that generates a steady, dipolar magnetic field and forms the
basis for a large amount of numerical [16] and experimental
work [5,17]. Figure 1 shows a three-dimensional visualization
of the flow and its dipolar eigenmode. A coordinate rotation
converts the flow and the magnetic eigenmode from purely
axisymmetric flow and purely nonaxisymmetric field defini-
tions to combinations of axisymmetric and nonaxisymmetric
components for both and thus opens up the dynamo system to
a mean-field analysis.

The rest of this paper will proceed as follows. Section II
will describe the kinematic dynamo problem. Section III will
describe the coordinate transformation between axisymmetric
flows and axisymmetric magnetic fields and define the mean-
flow-driven and fluctuation-driven emfs. Section IV will relate
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FIG. 1. (Color online) VAPOR [18] rendering of (a) the Dudley-
James two-vortex flow and (b) the transverse dipole eigenmode that
it excites. Reprinted from Ref. [16].

the fluctuation-driven emfs found in the Dudley-James two-
vortex flow to the fluctuation-driven emfs of mean-field theory.
Section V will explore the role of pitch angle and mean flow in
exciting a dynamo from the t2s2 flow. Section VI summarizes
the paper.

II. KINEMATIC DYNAMO MODEL

A typical first step in designing an experiment (numerical
or physical) is to solve the corresponding kinematic dynamo
problem, where the flow of the conductor is considered fixed
and only the magnetic induction equation

∂B
∂τ

= Rm∇ × (v × B) + ∇2B (1)

is considered. Here v is the (normalized) velocity field; B
is the magnetic field; Rm = v0a/η is the magnetic Reynolds
number, with v0, a, and η the characteristic velocity, length,
and magnetic diffusivity of the medium, respectively; and τ =
tη/a2 is the time normalized by the diffusion time. The usual
treatment of the problem in spherical geometries is to convert
from the spatial domain to a spectral domain by decomposing
the magnetic fields and flows into vector spherical harmonics
represented as
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Here S and T represent poloidal and toroidal harmonics
respectively, er,θ,φ are the unit vectors, and the Y

mi

�i
(θ,φ)

are (real, unnormalized) spherical harmonics (defined in
Appendix A). The azimuthal phase of the harmonic is indicated
by Y

mc(s)
� , where c and s represent cosine and sine. Harmonics

with mi = 0 have no derivative in the azimuthal direction
(∂φY 0

�i
= 0). Flows are represented the same way, but with

lower case s and t . In general, boldface B and v indicate the

full spatial vector fields and italic Bi and vi indicate a single
(arbitrary) spectral harmonics.

There is a set of selection rules for describing the v × b
interactions of flows with magnetic fields akin to the selection
rules of energy level transitions in quantum mechanics. It is
based upon the Gaunt K and Elsasser L integrals with

Kijk =
∫ π

0
sin(θ )dθ

∫ 2π

0
dφ Yi(θ,φ)Yj (θ,φ)Yk(θ,φ), (3)

Lijk =
∫ π

0
dθ

∫ 2π

0
dφ Yi(θ,φ)

(
dYj (θ,φ)

dθ

dYk(θ,φ)

dφ

− dYj (θ,φ)

dφ

dYk(θ,φ)

dθ

)
, (4)

respectively, where we note that Ljik = −Lijk .
In the spectral domain, Eq. (1) is composed of a diffusion

operator D,

D =
∑

k

∂2Bk

∂r2
− �k(�k + 1)

r2
Bk, (5)

and a flow operator F based on mode-mode interactions,

F =
∑
i,j,k

Bj

vi−→ Bk, (6)

where Bj

vi−→ Bk represents the conversion of the magnetic
harmonic Bj by the flow harmonic vi into the magnetic
harmonic Bk (see Appendix A for the definition of these
interactions). The selection rules of Eqs. (3) and (4) greatly
simplify the calculation of F . Interactions of the form S

s−→ S,

T
s−→ T , and S

t−→ T include Gaunt integrals [Eq. (3)], while

interactions of the form T
s−→ S, S

s−→ T , S
t−→ S, and T

t−→ T

include Elsasser integrals [Eq. (4)]. Interactions of the form

T
t−→ S are identically zero. We seek eigenvector solutions of

the magnetic induction equation

λ�b = (RmF + D)�b. (7)

Here λ represents the exponential growth or decay rate of
the eigenfunction �b. Useful quantities to consider will be the
amount of energy in a given magnetic harmonic over the
spherical domain, represented by 〈Bk|Bk〉, and the strength
of a given interaction of three harmonics over the spherical
domain, represented by 〈Bj |vi |Bk〉 (see Appendix A for their
exact definitions).

Kinematic dynamo studies generally focus on the onset
conditions for a growing eigenmode (both in the magnetic
Reynolds number and in the specific flow geometry) or the
structure of the induced magnetic field [19]. Here we consider
both for the two-vortex (t2s2) flow of Dudley and James [15]:

v = s0
2 (r) + t0

2 (r), (8)

where

s0
2 (r) = εr2 sin(πr),

t0
2 (r) = r2 sin(πr),

which is known to be dynamo unstable at comparatively small
Rm. The factor ε represents the pitch of the flow s/t and is set
to 0.14 for most of the discussion here.
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FIG. 2. (Color online) Mean components of the two vortex flow
about (a) the flow and (b) magnetic field symmetry axes. The thin
black lines represent poloidal streamlines, the thick black lines
represent the symmetry axes, the arrows indicate the direction of
the mean poloidal flow, and the rectangles indicate the location
of impellers that might drive such a flow (as in the experiment in
Ref. [5]).

III. COORDINATE TRANSFORM

The Dudley-James two-vortex flow generates a nonaxisym-
metric field from an axisymmetric flow, as is necessary under
Cowling’s theorem [7]. In laboratory settings, it has been
natural to define the axis of symmetry by the driving apparatus
[the horizontal axis defined by the impellers in Fig. 1(a)], in
which case the Dudley-James flow is axisymmetric. However,
a sphere has no natural axis of symmetry unless one is set by the
properties of the problem being solved. One could instead con-
sider the generated magnetic field to include an axisymmetric
field and define the spherical coordinates relative to that axis
[the vertical axis defined by the dipole field in Fig. 1(b)]. This
is a natural choice, as stellar and planetary dynamo-generated
fields tend to have strong axisymmetric components aligned
with the stellar or planetary rotation axis. This transformation
is necessary to apply a mean-field formulation of the dynamo
problem. Without the transformation we have axisymmetric
flows acting on azimuthally fluctuating magnetic fields and
there is no mean (axisymmetric) field. In the coordinate
system presented herein we have azimuthally fluctuating flows
interacting with azimuthally fluctuating magnetic fields to
generate an axisymmetric magnetic field.

The transformation from spherical harmonics defined about
one axis to another comes from the calculation of Wigner
D functions [20]. In the case where a transverse dipole Y 1c

1
becomes an axisymmetric dipole Y 0

1 , the second axisymmetric
spherical harmonic transforms as

Y 0
2 (θ,φ) = − 1

2Y 0
2 (θ ′,φ′) + 1

4Y 2c
2 (θ ′,φ′), (9)

i.e., the flow now has both axisymmetric and nonaxisymmetric
components relative to the induced axisymmetric dipole field.
We term the axisymmetric fields and flows as mean and the
nonaxisymmetric fields and flows as fluctuations. Figure 2
shows the change in the mean flows from the change in
coordinates. The advantage of a spherical geometry over a
cylindrical geometry is that this transformation is easy to
perform and requires no change to the machinery of the
eigenmode calculation.

The two-vortex flow implies a dynamo cycle where a
toroidal flow creates a toroidal field from a poloidal field
and then the helical flow converts the toroidal field back into

S
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FIG. 3. (Color online) Network diagram of the largest-scale
magnetic fields generated by a Dudley-James two-vortex (t0

2 ,s0
2 )

dynamo in both the (a) axisymmetric flow and (b) mean-field
configurations. Each node represents a magnetic field harmonic
and each edge (arrow that connects two nodes) represents a flow
(the legend is along the bottom). Orange (light) arrows indicate
that the energy in the target harmonic is being increased and blue
(dark) arrows indicate that the energy in the target harmonic is
being decreased. In the mean-field configuration the � effect is
highlighted and labeled, the possible pathways for the α effect are also
highlighted and labeled, and the β effect that removes energy from
the mean toroidal field [according to Eq. (4)] is labeled. Solid lines
in the borders of the nodes and in the edges indicate an aximuthally
symmetric mode. Dashed lines indicate an azimuthal fluctuation.

the poloidal field, thus closing the dynamo cycle. Figure 3
shows a simplified network representation of this cycle in
both an axisymmetric flow system [Fig. 3(a)] and a mean-field
system [Fig. 3(b)] representation. These figures represent
the same process in different coordinate systems, so we
shall describe only the mean-field representation [Fig. 3(b)].
Here an existing axisymmetric poloidal dipole field S0

1 is
stretched into an axisymmetric toroidal magnetic field T 0

1 by
differential rotation (the t0

2 flow harmonic, labeled � in the
figure). This toroidal field is then converted into a fluctuating
poloidal magnetic field S2s

2 by a fluctuating poloidal flow s2c
2 .

This fluctuating poloidal field interacts with the fluctuating
poloidal flow to remove energy from the axisymmetric toroidal
field (interaction β1 in the network). The fluctuating poloidal
field also interacts with the fluctuating toroidal flow t2c

2
and by this interaction is converted back into the original
poloidal dipole. This entire process is highlighted and labeled
as α1 in the network. Similarly the axisymmetric toroidal
field T 0

1 is converted by the fluctuating toroidal flow into
a fluctuating toroidal magnetic field, which then interacts
with the fluctuating poloidal flow to be converted back into
the axisymmetric dipole field (labeled as β2 and α2 in the
network). The conversion of one magnetic harmonic into
another by a given flow is indicated by matched blue (dark)
and orange (light) arrows. The orange (light) arrows indicate
the increase of the destination harmonic, while the blue (dark)
arrows indicate the decrease of the source harmonic. These
same processes are present in the axisymmetric flow system
[Fig. 3(a)], but there is no way to disentangle the mean � and
fluctuating α and β effects.

These networks are made by considering only the selection
rules [Eqs. (3) and (4)]. Each node in the network represents a
magnetic field harmonic and each edge (an arrow that connect
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two nodes) represents a valid interaction Bj

vi−→ Bk [as in

Eq. (6)]. For example, in the S0
1

t0
2−→ T 0

1 interaction the t0
2 flow

acts on the S0
1 to increases the energy in the T 0

1 harmonic.
We now turn to consider the interactions mediated by

fluctuating flows and field. The T 0
1

s2c
2−→ S2s

2 and the S2s
2

s2c
2−→ T 0

1
interactions involve the same harmonics with the j and k

indices interchanged. As these interactions have the Elsasser
integral as a factor, the interchange of indices flips the sign

of the interaction. Therefore, if T 0
1

s2c
2−→ S2s

2 is increasing the

energy in the S2s
2 harmonic, S2s

2

s2c
2−→ T 0

1 is simultaneously
decreasing the energy in the T 0

1 harmonic and energy flows
from T 0

1 to S2s
2 . This representation is a natural analog to the

traditional mean-field formulation [11] because it decouples
the � effect (mean toroidal flow) from the α effect (conversion
of toroidal field into poloidal field from toroidal and poloidal
flow fluctuations).

The transformation allows the simple two-vortex dynamo to
be interpreted in terms of the same interactions of fluctuating
flows and fluctuating magnetic fields that more complicated
dynamo simulations achieve. The flow and field are broken up
into

v = V + ṽ,
(10)

B = B + b̃.

Here an overbar denotes a mean value over the azimuth
(m = 0) and a tilde denotes a fluctuating value (m �= 0). The
fluctuating components azimuthally average to zero, but they
can beat together to generate a mean value

ṽ = b̃ = 0,

ṽB = b̃V = 0,

but

ṽ̃b �= 0.

It is useful to define a vector potential of the mean magnetic
field A such that

B(r,θ ) = ∇ × A(r,θ ),

A(r,θ ) =
∑
mi=0

∇ × S0
�i

(r)Y 0
�i

(θ )er + T 0
�i

(r)Y 0
�i

(θ )er

=
∑
mi=0

−S0
�i

r

∂Y 0
�i

∂θ
eφ + T 0

�i
Y 0

�i
er . (11)

The reason for this is that the axisymmetric component of the
magnetic field can be represented by two axisymmetric scalar
functions

B = Bφ(r,θ )eφ + ∇ × Aφ(r,θ )eφ. (12)

Both of these scalar functions define divergence free vector
fields

∇ · Bφeφ = ∇ · Aφeφ = 0. (13)

We can define a fluctuation driven emf

E(r,θ ) ≡ ṽ × b̃ =
∫ 2π

0
dφ ṽ(r,θ,φ) × b̃(r,θ,φ) (14)

and a mean-flow driven emf

E(r,θ ) = V(r,θ ) × (Bφeφ) + V(r,θ ) × ∇ × (Aφeφ) (15)

and rewrite the magnetic induction equation (1) as time
evolution equations for Aφ and Bφ coupled by these emfs:

∂Aφ

∂τ
= E · eφ + E · eφ + ∇2Aφ, (16)

∂Bφ

∂τ
= (∇ × E) · eφ + (∇ × E) · eφ + (∇2Bφ). (17)

We note that ∇2B = −∇ × ∇ × B. Since we are looking at
eigenvectors of the induction equation, the time derivative can
be replaced by the eigenvalue. The emfs on the right-hand
sides of Eqs. (16) and (17) can be treated as sources and sinks
of the toroidal magnetic field and toroidal vector potential,
respectively, by dotting each equation with Aφ or Bφ so that

λAφAφ = AφEφ + AφEφ − Aφ(∇ × A)φ, (18)

λBφBφ = Bφ(∇ × E)φ + Bφ(∇ × E)φ + Bφ∇2Bφ. (19)

These source and sink functions can be integrated over the
sphere to give an indication of the total effect of each emf on
the mean field

〈Aφe〉 =
∫ 1

0 dr
∫ π

0 sin(θ )dθ Aφ(r,θ )eφ(r,θ )∫ 1
0 dr

∫ π

0 sin(θ )dθ Aφ
2
(r,θ )

, (20)

〈Bφe〉 =
∫ 1

0 dr
∫ π

0 sin(θ )dθ Bφ(r,θ )(∇ × e)φ(r,θ )∫ 1
0 dr

∫ π

0 sin(θ )dθ Bφ
2
(r,θ )

. (21)

Here e is any of the emfs (E , E, ∇2Aφ , or ∇2Bφ). The the
eigenvalue of the magnetic induction equation is the sum of
all three emfs

λ = 〈AφE〉 + 〈AφE〉 − 〈Aφ∇2Aφ〉
= 〈BφE〉 + 〈BφE〉 − 〈Bφ∇2Bφ〉.

IV. MEAN-FIELD EFFECTS AT LARGE AND
SMALL SCALES

The mean-field theory definition of the fluctuation-driven
emf posits that [11]

E = αB − β∇ × B. (22)

Here α and β are functions of the statistical properties of the
fluctuating flow and are defined as

α = 1

3

∫ ∞

0
dτ ṽ(r,t) · ∇ × ṽ(r,t − τ ), (23)

β = 1

3

∫ ∞

0
dτ ṽ(r,t) · ṽ(r,t − τ ). (24)

These functions are derived by assuming that the velocity
fluctuations beat with the magnetic fluctuations that they
induce from the mean field. The α effect drives a current
parallel to the mean magnetic field and the β effect drives
a current antiparallel to the curl of the magnetic field. In
the large-eddy consideration the interaction of a poloidal
velocity fluctuation with the magnetic fluctuation induced by
the toroidal velocity fluctuation (and vice verse) is termed an
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FIG. 4. (Color online) Toroidal vector potentials (left) and mag-
netic fields (right) in a Dudley-James two-vortex system. The color
table is set to a logarithmic scale. Fields are calculated for Rm = 60,
with an eigenvalue λ = 1.49. (a) Axisymmetric components of the
fastest growing eigenmode at Rm = 60, with contours showing field
lines of the poloidal magnetic field. (b) Fluctuation driven emfs [see
Eq. (14)]. (c) Mean-flow driven emfs [Eq. (15)]. (d) Effect of diffusion
upon the growing magnetic fields. The emfs are multiplied by the
eigenmode so that orange (light) always indicates a strengthening of
the local magnetic field and blue (dark) always indicates a weakening.
The scaling for each plot is quoted at the bottom. For (b)–(d), 〈Aφe〉
and 〈Bφe〉 [see Eqs. (20) and (21)] are also quoted.

α effect. The relation to the mean field α becomes clear from
the fact that the curl operation converts between toroidal and
poloidal fields according to

∇ × v =
∑

i

∇ × ∇ × tier − ∇ × ∇2sier . (25)

The toroidal and poloidal velocity fluctuations also interact
with the magnetic fluctuations that they themselves induce.
The relation to the mean field β effect is obvious.

Figure 4 represents the magnetic eigenmode [Fig. 4(a)]
and the emfs that give rise to it in the spatial domain. The
eigenmode is multiplied by the given emf so that orange
(light) regions in Figs. 4(b)–4(d) indicate that energy is being
transferred to the eigenmode via that portion of the emf. Blue
(dark) regions indicate that energy is being removed from the
eigenmode. The fluctuation-driven emf is shown [Fig. 4(b)]
creating a mean poloidal field (left) while destroying a mean
toroidal field (right). The creation of a poloidal field in a
region where the toroidal field is being diminished suggests

Large-scale interactions

Ω

α

α
β

β

T0
1

S

T

S

S
2s
2

T0
3

T
4 s
4

S

T
2c
3

T

S0
1

Cascade to

small scales

FIG. 5. (Color online) Network diagram representing the effect
of the full Dudley-James t2s2 flow on a dynamo unstable eigenmode.
The eigenmode represents Rm = 60, with an eigenvalue λ = 1.49.
This network diagram follows the conventions of Fig. 3. The diagram
is generated from the solution of the eigenvalue equation (7). The
width of a given node is logarithmic in the amount of energy in that
harmonic over the sphere 〈Bk|Bk〉 and the thickness of a given edge is
linear in the coupling strength 〈Bj |vi |Bk〉. The network is truncated at
� = 4. Nodes with 〈Bi |Bi〉 less than 1.3% of 〈S0

1 |S0
1 〉 and interactions

weaker than 10% of 〈S0
1 |t2c

2 |T 2c
3 〉 are ignored. The α-� dynamo is

highlighted and the β effect is labeled as in Fig. 3(b).

that the fluctuation-driven emf converts the toroidal magnetic
field into a poloidal one. The toroidal field is then regenerated
from the mean toroidal shear, which provides an � effect
[Fig. 4(c)]. The mean poloidal flow sweeps the poloidal and
toroidal fields out of the core of the sphere and out toward the
edge, which reduces the effect of diffusion on destroying the
magnetic field [Fig. 4(d)]. This last step is further explored in
Sec. V.

We also construct a full network of spherical harmonic
modes and interactions from the eigenmode and the flow
matrix (Fig. 5) to better represent magnetic induction in terms
of individual three-wave couplings. Like in Fig. 3, the nodes
of the network represent the magnetic field harmonics and
the edges represent valid interactions. However, now all of
the couplings are apparent. Here the size of a given node is
representative of how much energy is in that harmonic over
the spherical domain 〈Bk|Bk〉 and the thickness of the edges
represents how strong a given coupling 〈Bj |vi |Bk〉 is. The box
labeled “Large-scale interactions” is the full representation of
the network shown previously in Fig. 3(b) calculated from
the flow matrix and the eigenvector rather than just by the
selection rules. The fundamental dynamic is still the mean
toroidal flow generating an axisymmetric toroidal field from
an axisymmetric dipole poloidal field (labeled �) and an α

effect that converts the toroidal field back into the poloidal field
while a β effect acts to diminish the toroidal field. The strongest
coupling in the network is 〈S0

1 |t2c
2 |T 2c

3 〉, but the effect of the
T 2c

3 harmonic on the primary dynamo cycle is small. Indeed,
as is apparent from Fig. 5, all the higher-order magnetic fields
cascade to smaller and smaller scales without great influence
on the large-scale dynamics (thus the network is truncated at
� = 4).

The advantage of this view is that it isolates the important
couplings and interaction pathways more obviously than the
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spatial view in Fig. 4. The relation between the spatial and
spectral representations is that 〈AφE〉 and 〈BφE〉 represent the
sum of all 〈B|v|B〉 and 〈AφE〉 and 〈BφE〉 represent the sum
of all 〈B̃ |̃v|B〉. Likewise, this is based on calculated couplings
and is more physical than the schematic view presented in
Fig. 3.

The network diagram justifies the appropriation of mean-
field magnetohydrodynamics language. It confirms that the
helical fluctuations are transferring energy from the toroidal
field into the poloidal field, as was hinted by Fig. 4. The toroidal
and poloidal fluctuating flows seed magnetic fluctuations from
the mean toroidal field. The toroidal flow then beats with the
magnetic fluctuation induced by the poloidal flow to generate
a mean poloidal field (as per the α effect and labeled as such
in the network). The toroidal and poloidal flow fluctuations
also then beat with the magnetic fluctuations they themselves
induce—〈T 0

1 |t2s
2 |T 2c

2 〉 and 〈T 0
1 |s2s

2 |S2c
2 〉, respectively—to re-

move energy from the mean toroidal field (as per the β effect
and labeled as such in the network).

The cross sections (Fig. 4) and the network (Fig. 5) taken
together demonstrate the dominance of large-scale dynamics
in the evolution of the magnetic field. The axisymmetric
component of the eigenmode is clearly dominated by the
largest scales both radially (as evinced by the cross section)
and spectrally (as evidenced by the amount of energy in
the � = 1 modes). The network further confirms that the
transfer of energy between poloidal and toroidal magnetic
fields is dominated by the interactions of large-scale flows
and large-scale fields.

V. EFFECTS OF FLOW PITCH AND MEAN FLOW
COMPONENTS

Once a successful dynamo has been generated, it is possible
to modify the flow to find the point where it no longer
successfully dynamos. Dudley and James found a growing
dynamo for only a single flow pitch (ε = 0.14) of the set of
pitches they tested at Rm � 120 (ε = 0.05,0.10,0.14,0.20).
Figure 6 points to why this would be the case. The scan in the
pitch angle reveals a bifurcation bubble, where two degenerate
eigenvectors split such that one grows faster or decays slower
than the other. The early studies of Dudley and James [15]
bracket this bubble, with only a single pitch angle in the bubble.
The range of dynamo unstable ε changes as a function of Rm,
but has the fastest growth rate at ε ∼ 0.13.

Our analysis method allows us to study dynamo onset
with specially constrained flows. Figure 7 shows the growth
curves for flows with individual flow harmonics removed.
Unsurprisingly, the loss of the � effect t0

2 increases the dynamo
threshold greatly. The dynamo can also still function when one
fluctuation or the other (s2

2 or t2
2 ) is eliminated. At high enough

Rm, other closed networks originating at S0
1 generate more

energy than is dissipated.
The flow with the highest Rmcrit is the one with the s0

2
flow removed, despite the fact that this flow has a very
weak signature in the network diagram of Fig. 5. The most
readily apparent answer is that the s0

2 flow adds advection
to the system, which redistributes magnetic flux to mitigate
the effects of diffusion. The signature is weak because the
redistribution is neither a strong creator nor destroyer of total
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FIG. 6. (Color online) (a) Critical flow pitches plotted against
Rm. (b) Largest eigenvalues plotted against ε at various Rm. The
dashed lines in (a) represent the flow pitch in (b) where the real parts
of the eigenvalues split. The thin black lines in each plot indicate the
values of ε used by Dudley and James.

magnetic flux. To see this more clearly we examine the spatial
distribution of emfs with no s0

2 flow (Fig. 8). The dynamics
of the poloidal field is relatively unchanged by the loss of
poloidal advection. The eigenmode has the same general shape
[left-hand sides of Figs. 4 and 8(a)]. The fluctuation-driven emf
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FIG. 7. Growth curves for the two-vortex flow with all flows
(black solid line) and with individual flows removed. The Rmcrit are
labeled on the x axis. The scans are performed with a resolution of
100 radial points and an mmax = �max of 7 and are likely significant
to about 1% error (see the Appendix).
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FIG. 8. (Color online) Toroidal vector potentials (left) and mag-
netic fields (right) in a Dudley-James two-vortex system with the
s0

2 flow eliminated. Fields are calculated for Rm = 60, with an
eigenvalue of λ = −10.01. The plots follow the same scheme as
in Fig. 4. The left hemisphere of (c) is crossed out because there is no
mean poloidal flow and the mean toroidal flow cannot drive a mean
toroidal current.

E is weaker, but again has the same general shape [left hand
sides of Figs. 4 and 8(b)]. The diffusion likewise has about the
same effect [left-hand sides of Figs. 4 and 8(d)]. The toroidal
field, however, suffers greatly from the loss of the poloidal
advection. The shape of the field is similar [right-hand sides
of Figs. 4 and 8(a)], but diffusion now completely matches the
� effect [right-hand sides of Figs. 4 and 8(c) and 8(d)]. The
turbulent emf continues to convert the toroidal magnetic field
into a poloidal one, for a net loss of toroidal magnetic energy
[Fig. 8(b)].

The reason for this dependence on poloidal advection is
not obvious from the eigenmode calculation and its network
of interactions presented here. The answer may be in an
alternative formulation by Livermore and Jackson [21] where
the growth of magnetic energy in the domain is the instability
criterion (rather than the growth of individual eigenmodes,
as studied here). They studied modified t1s2 flows, similar to
Dudley and James [15], and found that the poloidal advection
is a necessary ingredient for instability and that small changes
to the poloidal flow strongly affected the onset of the instability
(and hence Rmcrit). Generally, the growth curve they found for
a field with an S0

1 component and Rm < 0 was similar to the
growth curve for a field with an S1

1 component and Rm > 0.
This is consistent with our understanding from the coordinate
transformation [Eq. (9)].

VI. CONCLUSION

The coordinate transformation presented in this paper
has shown the simple and steady Dudley-James two-vortex
dynamo to depend on effects from flows that are both
coaxial with, and fluctuations relative to, the induced magnetic
axis. This exposes the simple dynamo to more sophisticated
analyses in terms that approximate those of mean-field theory.
The usual terms of α, β, and � now have specific velocity
components that they can attach to. Furthermore, the necessity
of advection in countering diffusion to allow a large-scale
magnetic field to grow is directly demonstrated by the difficulty
of a dynamo without poloidal advection.

Much of the discussion of mean-field effects still focuses on
scale-separated eddies [3,12], but there is numerical [13] and
experimental [5] evidence that the large eddies are essential
to understanding the conditions for dynamo onset. The work
here shows that the large-eddy mean-field effects have been
with us for a long time.
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APPENDIX A: DEFINITIONS AND NOMENCLATURE

The real, unnormalized spherical harmonics are defined as

Y

m

{ c
s

}
� (θ,φ) = P m

� ( cos(θ ))
{ cos(mφ)

sin(mφ)
}
, (A1)

where P m
� is the associated Legendre polynomial. In this

discussion we will denote the radial profile of a given harmonic
according to

〈Bj | ≡ Bj (r), |Bk〉 ≡ Bk(r), r ∈ [0,1]. (A2)

We define an inner product as

〈Sj |S ′
k〉 = δk

j Nk

∫ 1

0
dr

(
Sj (r)S ′

k(r)�k(�k + 1)

r2

+ dSj (r)

dr

dS ′
k(r)

dr

)
,

〈Tj |T ′
k〉 = δk

j Nk

∫ 1

0
dr Tj (r)T ′

k (r),

Ni = 2π
(
1 + δ0

mi

)
�i(�i + 1)

2�i + 1

(�i + mi)!

(�i − mi)!
. (A3)

The δk
j term is the Kroenecker delta and comes from the

orthogonality of the poloidal and toroidal spherical harmonics.
The energy of a single harmonic in the domain is given by
〈Bi |Bi〉.

In this notation, each individual flow harmonic is treated as
an operator that converts one magnetic harmonic into others
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using the relations of Eq. (A7),

〈Bj |vi =
∑

k

(Bj

vi−→ Bk)〈Bk|, (A4)

i.e., the radial profile of a magnetic harmonic 〈Bj | is being
acted on by the flow harmonic vi to generate several magnetic
harmonics 〈Bk|. The strength of a coupling between two
modes through a flow is characterized by 〈Bj |vi |Bk〉. The
orthogonality of harmonics means that the inner product will
pick out only the projection onto the Bk mode. We draw our
inspiration from the bra-ket notation of quantum mechanics,
but we have modified the notation to fit more naturally with
our notation of three-wave couplings.

The β effect can be represented in this notation as

〈B1|β|B1〉 = 〈B1|ṽ1|B̃i〉〈B̃i |ṽ1|B1〉, (A5)

while the α effect can be represented as

〈B1|α|B2〉 = 〈B1|ṽ1|B̃i〉〈B̃i |ṽ2|B1〉 + 〈B1|ṽ2|B̃i〉〈B̃i |ṽ1|B1〉.
(A6)

Here B1,2 are specific mean fields (B1 and B2 cannot both be
S or T modes), ṽ1,2 are specific fluctuating flows (which must
have the same m order and again cannot both be s or t), and B̃i

may be either a single magnetic fluctuation or summed over
all fluctuating modes. The interaction terms Bj

vi−→ Bk , where
a source magnetic harmonic Bj is acted on by a flow harmonic
vi to create a magnetic harmonic Bk , are defined according to
which of vi , Bj , and Bk are poloidal and which are toroidal:

(Sj

si−→ Sk) = Kijk

Nk

[
picisi

dSj

dr
− pjcj

d si

dr
Sj

]
,

(Sj

si−→ Tk) = −Lijk

Nk

[
pj

(
d2si

dr2
− 2

r

dsi

dr

)
Sj

− 2

(
ck

dsi

dr
+ pisi

r

)
dSj

dr
+pisi

d2Sj

dr2

]
,

(Tj

si−→ Sk) = Lijk

Nk

pisiTj ,

(Tj

si−→ Tk) = Kijk

Nk

{[
pici

(
dsi

dr
− 2si

r

)
+ pkck

dsi

dr

]
Tj

+ picisi

dTj

dr

}
, (A7)

(Sj

ti−→ Sk) = Lijk

Nk

pj tiSj ,

(Sj

ti−→ Tk) = −Kijk

Nk

[
(pkck + pjcj )ti

dSj

dr

+pjcj

(
d ti

dr
− 2ti

r

)
Sj

]
,

(Tj

ti−→ Sk) = 0,

(Ti

tj−→ Tk) = Lijk

Nk

pktiTj ,

where pi = �i (�i + 1).

TABLE I. Scan of eigenvalues of the t2s2 flow at Rm = 60 with
respect to latitudinal and radial resolution. The memory capacity of
the calculating computer limited the radial resolution scan to �max =
10. The bold numbers indicate the level of agreement with the �max =
20 case for rows 1–6 and the nr = 1600 case for the last two rows.

�max nr λ(60) �max nr λ(60)

9 100 1.448926 15 100 1.456606
10 100 1.459326 16 100 1.456597
11 100 1.457070 17 100 1.456594
12 100 1.457180 18 100 1.456599
13 100 1.456460 19 100 1.456597

14 100 1.456679 20 100 1.456597
10 200 1.458498 10 800 1.458241
10 400 1.458292 10 1600 1.458228

APPENDIX B: NETWORK GRAPHS AS A WAY OF
UNDERSTANDING NONLINEAR INTERACTIONS

A long-standing problem in computer science is how to best
lay out a graph to represent connections between different
nodes in a network. A common algorithm is to create a
network of springs, whose stiffness represents the strength
of the connection between given nodes, and then find a
minimum-energy configuration of nodes [22]. Programs that
can automatically generate graph layouts are a common tool in
exploratory data analysis. The graph of Fig. 5 was generated
using one such tool, Graphviz, which is open source and
maintained by AT&T Labs Research [23].

The kinematic dynamo problem is a good target for this
kind of analysis because it is a linear problem; nodes and
edges (couplings) are distinct from each other. All nodes are
single magnetic harmonics. All edges represent the beating of
a velocity harmonic with a magnetic harmonic to generate
a second magnetic harmonic, the strength of a coupling
between two modes is easy to calculate [see Eq. (A4)], and the
selection rules of the Bullard-Gellman formalism [see Eqs. (3)
and (4)] prevent the graph from becoming too cluttered. The
graph layout highlights strong connections between magnetic

TABLE II. Comparison of eigenvalues of the t2s2 flow between
axisymmetric flow and axisymmetric field calculations. These calcu-
lations were performed at Rm = 60 and scanned with respect to lati-
tudinal and radial resolution. The calculations labeled “Axisymmetric
field” were carried out with full azimuthal resolution (mmax = �max).
The bold numbers on the right half of the table indicate the agreement
between the eigenvalues and the �max = 20,nr = 100 case of Table I.

Axisymmetric flow Axisymmetric field

�max nr λ(60) �max nr λ(60)

5 100 1.249179 5 100 1.249179
6 100 1.549141 6 100 1.549141
7 100 1.491581 7 100 1.491581
8 100 1.504970 8 100 1.504970
9 100 1.448926 9 100 1.448926
10 100 1.459326 10 100 1.459317
11 100 1.457070 11 100 1.457063
12 100 1.457180 12 100 1.409343
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harmonics much more clearly than a tabular layout would by
physically placing strongly coupled nodes near each other.
As such, this is a good method for understanding complex
three-wave interactions that are important in all turbulent
systems.

APPENDIX C: THE PYNTDYN CODE

All of the numerical work in this paper was done using
PYNTDYN, a kinematic dynamo simulation code based upon the
work of Bullard and Gellman [19] and Dudley and James [15].
It uses the spherical harmonic expansion of the magnetic and
velocity fields [Eq. (2)] and treats the radial functions S,
T , s, and t with finite-difference methods. More advanced,
spectral, codes have been developed with more favorable
convergence properties [24], but the finite-difference solution
is sufficient for the purpose of this work. Table I demonstrates

the convergence properties of PYNTDYN solving the eigenvalue
problem for a two-vortex flow.

pyntdyn is written in python, making heavy use of the
Numpy, Scipy, and Pysparsematrix libraries. The eigen-
values and eigenvectors are found with Arnoldi iteration
as implemented in ARPACK [25]. Table II demonstrates that
the eigenvalue calculated under the rotation agrees with the
unrotated eigenvalue to eight significant digits for �max � 9.
The loss of agreement at higher resolutions is indicative of
the cost of this transformation. The interaction terms in the
advection matrix are proportional to 1/N , as calculated in
Eq. (A3). When nonaxisymmetric flows are included, a fully
resolved calculation needs to include m in [0,�max] rather than
just m = 1 as in the axisymmetric flow case. Since Ni scales
as (�i + mi)!/(�i − mi)! [see Eq. (A3)], the larger mmax makes
for an enormous Ni , which then spoils the condition number
of the matrix.
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